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Abstract. We obtain an approximate form of gluon momentum density G(x, Q2) from next to leading
order (NLO) GLAP equation at low x, with a factorization ansatz recently reported and test its validity
by comparing it with that of Glück, Reya and Vogt (GRV-HO) which has no such additional assumption.
Using Prytz’s approximate method, we calculate dF2/d log Q2 using LO and NLO forms of gluon density.
Limitation of the present formalism is critically discussed and approximate factorizability zone in (x−Q2)
plane is indicated.

1 Introduction

Traditionally, information on the gluon shape is extracted
directly from the large pT prompt photon production in
fixed target pN collisions, where qg → γq process (q =
quark, g = gluon) is dominant [1]. In recent years however,
the measurement of proton structure function at e−p col-
lider HERA in the regime of low x (x ≤ 10−4) has opened
a new direction in this problem [2, 3]. At low x, structure
function F2(x, Q2) is dominated by gluons and the GLAP
equations [4–7] can be approximately solved [8–10] so that
the Q2 derivative of F2(x, Q2) can be directly related to
the gluon momentum density G(x, Q2). Similarly, mea-
surement of the longitudinal structure function FL(x, Q2)
has also long been advocated [11, 12] as a direct probe of
the gluon density at small x.

The structure of the gluon momentum density and its
x and Q2 evolutions have been reported in recent years
both in GLAP [13, 14] and BFKL approaches [15–18].
The aim of the present paper is to suggest an alternative
form of gluon evolution using the next-to-leading order
(NLO) GLAP equation [7, 19–20] with an additional as-
sumption of factorization [21, 22] and test its validity by
comparing it with that of Glück, Reya and Vogt (GRV-
HO) [23] which does not have such factorizability in x and
t

(
t = log Q2

Λ2

)
. We then study its consequences by esti-

mating the slope of the structure functions at low x [8, 9].
Section 2 outlines the formalism while Sect. 3 is devoted
to results and discussions.

2 Formalism

(A) Gluon momentum density

The gluon evolution equation with the next-to-leading or-
der (NLO) effects is [7, 19, 20]

Q2 ∂G(x, Q2)
∂Q2 =

∫ 1

x

α(Q2)
2π

[
P (1)

gg (z) +
α(Q2)

2π
P (2)

gg (z)
]

G(x/z, Q2)dz (1)

where the splitting kernels P
(1)
gg (z) of LO and P

(2)
gg (z) of

NLO are defined in [7, 19, 20] while the running coupling
constant α(Q2)

2π has the form in NLO as

α(Q2)
2π

=
2

β0 ln (Q2

Λ2 )

[
1 − β1ln ln Q2

Λ2

β2
0 ln Q2

Λ2

]
(2)

with β0 = 1
3 (33 − 2nf ) and β1 = 102 − 38

3 nf , nf being
the number of flavour. In (1), G(x, Q2) = xg(x, Q2) is
the gluon momentum density and g(x, Q2) is the gluon
number density of proton.

Let us use the variable t [20]

t =
2
β0

ln
[
α(Q2

0)
α(Q2)

]
(3)

so that
α(t)
2π

=
α(t0)
2π

exp
[
−β0

2
t

]
. (4)

Using (3) and (4) in (1), we get

dG(x, t)
dt

=
∫ 1

0
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[
P (1)

gg (z) +
α(t)
2π

{
P (2)

gg (z) − β1

2β0
P (1)

gg (z)
}]

G(x/z, t)dz .

(5)

Let us now assume that the x and t dependence of the
structure function is factorizable [21, 22].

G(x, t) = U(x) h(t) (6)

with the condition

U(x) = (G(x, t0)) (7)

so that (5) becomes

U(x)
d h(t)

d t
=

∫ 1

x

[
P (1)

gg (z) +
α(t0)
2π

e− β0
2 t

{
P (2)

gg (z) − β1

2β0
P (1)

gg (z)
}]

U(x/z) h(t)dz (8)

or
d h(t)
h(t)

=
[∫ 1

x

P (1)
gg (z)

U(x/z)
U(x)

dz +
α(t0)
2π∫ 1

x

{
P (2)

gg (z) − β1

2β0
P (1)

gg (z)
}

e− β0t

2
U(x/z)
U(x)

dz

]
dt (9)

Let I1(x) =
∫ 1

x

P (1)
gg (z)

U(x/z)
U(x)

dz (10)

and I2(x) =
∫ 1

x

[
P (2)

gg (z) − β1

2β0
P (1)

gg (z)
]

U(x/z)
U(x)

dz .

(11)
Using (10) and (11) in (9), we get

d h(t)
h(t)

=
[
I1(x) + I2(x)

α(t0)
2π

e− β0
2 t

]
dt , (12)

the solution of which is

h(t) = h(t0) exp
[
I1(x)t − 2

β0
I2(x)

α(t)
2π

(
1 − e+β0

t
2

)]
.

(13)
This yields the gluon momentum density with second

order effects as

G(2)(x, t) = G(x, t0)
[
α(t0)
α(t)

]I1(x)2/β0

exp
[
I2(x)

2
β0

· α(t)
2π

{
α(t0)
α(t)

− 1
}]

. (14)

We note that the leading term of the splitting kernel
P

(1)
gg (z) as z → 0 is

P (1)
gg (z) ∼ 6

z
(15)

so that I1(x) ∼ 6 ln
1
x

(16)

As the running coupling constant αs(Q2)
2π retains only

the first term of (2) one identifies the leading order term
of the gluon momentum density as

G(1)(x, t) = G(x, t0)
[
αLO(Q2

0)
αLO(Q2)

]I1(x) 2/β0

(17)

which has x → 0 limit

G(1)(x, t) = G(x, t0)
(

t

t0

) 12
β0

ln 1
x

(18)

where t = ln Q2

Λ2 .
Taking the leading term of the splitting kernel P

(2)
gg (z)

as [9]

P (2)
gg (z) ∼ 52

3
1
z

, (19)

x → 0 limit of I2(x) becomes

I2(x) ∼
(

52
3

− 3β1

β0

)
ln

1
x

. (20)

This yields finally at low x

G(2)(x, t) = G(x, t0)
[
α(t0)
α(t)

] 12
β0

ln 1
x

exp
[(

52
3

− 3β1

β0

)
ln

1
x

· 2
β0

α(t)
2π

{
α(t0)
α(t)

− 1
}]

.

(21)

Equations (14), (17), (18) and (21) are our main results.
Let us now discuss how the present results differ from

the standard results of the gluon evolutions at low x.
The factorization ansatz, (6) is too strong an assump-

tion and cannot be proved in general within GLAP [4–7] or
BFKL [15–18] dynamics. If only the 1/z part of the Pgg(z)
is retained, one obtains such factorizability for log G(x, t).
In NLO, even log G(x, t) loses such factorizability with
such double leading log term. The assumption (6) which
leads to (21) thus warrants phenomenological testing be-
fore making predictions from it. In the following, we will,
therefore extend our earlier leading order analysis [22] and
attempt to see how the predictions with this assumption
compare with those of gluon distribution which does not
have such an additional assumption like the HO model of
Glück, Reya and Vogt [GRV-HO] [23]. This will enable
us to find the kinematic region of approximate validity of
(21).

(B) Structure function at low x from gluon density

Sometime back [8], a method to obtain an approximate
relation between the gluon density and the scaling viola-
tion of F2(x, Q2) at low x has been reported, leading to a
formula,

d F2(x)
d log Q2 ≈ αs

4π
· 20

9
· G(2x) (22)
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Fig. 1a–l. G(x, Q2) as function of x at Q2 (in GeV2) values a 4.5; b 6; c 8.5; d 10; e 20; f 40; g 80; h 100; i 160; j 1600; k 104;
l 105. Curves 1 and 2 represent G(x, Q2) obtained form GRV-HO [23] and (14)

The method has later been extended [9] to include the
NLO corrections as well:

d F2(x)
d log Q2 ≈ G(2x) · 20

9
· αs

4π

[
2
3

+
αs

4π
· 3.58

]

+
(αs

4π

)2
· 20

9
· N(x, Q2) , (23)

where N(x, Q2) is given explicitly in (7) of [9].
Equations (22) and (23) have been used to measure the

gluon momentum density at low x. In the present work,
we rather follow an inverse approach: we estimate the log-
arithmic slope of the structure function from the proposed
gluon evolutions as discussed earlier.

3 Results and discussions

As noted earlier, the factorization assumption (6) is in
general not true in GLAP [4–7] or even in BFKL [15–18]
dynamics. We have therefore, attempted to see how the
predictions with this assumption compare with those of
gluon distribution which does not have such an assump-
tion as in GRV-HO [23]. This will enable us to find the
kinematic region of its approximate validity.

In Fig. 1 (a–l), we show the prediction of (21) with fac-
torization ansatz (6) [Curve marked 2] and compare with
GRV-HO [23] [Curve marked 1] for representative Q2 val-
ues 4.5, 6, 8.5, 10, 20, 40, 80, 100, 160, 1600, 104 and
105 GeV2 and 10−4 < x < 10−1 starting with the evo-
lution at Q2

0 = 4 GeV2. These figures show the following



304 D.K. Choudhury et al.: Gluon distribution and dF2/d lnQ2 at small x in the next-to-leading order

Fig. 1a–l. (continued)

Fig. 2. Approximate factorizability zone in x-Q2 plane

feature for smaller x range (x < 10−2): at fixed Q2, the
difference between the two increases as x is decreased, such
difference becomes more as Q2 is increased. For each Q2,
there is a cross-over point for both the curves where both
the predictions are numerically equal. The cross-over point
shifts to lower x as Q2 increases. Approximately, such
cross over occurs at x > 10−2 for Q2 ∼ 4.5–160 GeV2 and
at 10−3 < x < 10−2 for Q2 ∼ 1600–105 GeV2. This feature
was observed earlier for the corresponding LO analysis as
well [22]. From an analysis of these figures, we can find the
limited range of x and Q2 where our approximate form
of factorizable gluon density differs from nonfactorizable
GRV-HO [23] by not more than 20% as shown in Fig. 2.

The shape of the gluon distribution in LO can be tested
through its approximate relationship with the longitudi-
nal structure function FL [11]. However, as there is yet
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Table 1. Predicted values of the logarithmic slope d F2/d lnQ2

and their comparison with data [29] at Q2 = 20GeV2

Predicted values of the slope

x Measured value GRV MRS Do’ MRS D′

of slope
LO LO + NLO LO + NLO

8.5 × 10−4 0.45 ± 0.08 0.496 0.49 0.58
2.55 × 10−3 0.30 ± 0.09 0.307 0.41 0.44
2.68 × 10−3 0.25 ± 0.05 0.300 0.32 0.33
4.65 × 10−3 0.23 ± 0.04 0.230 0.25 0.25

Table 2. Percentage of difference between theory and experi-
ment for logarithmic slope d F2/d lnQ2 from Table 1

x GRV (LO) MRS Do’ MRS D′

8.5 × 10−4 10.2% 8.8% 28.8%
2.55 × 10−3 2.3% 36.6% 46.6%
2.68 × 10−3 20% 28% 32%
4.65 × 10−3 0% 8.6% 8.6%

no such simple relationship in NLO [24–26], we rather ap-
peal to the approximate relationships (22) and (23) be-
tween the logarithmic slope of the structure function and
the gluon distribution. For (22) we use (17) and GRV-LO
input [27] while for (23), we use (14) taking MRS Do′ and
D′ parametrizations [28] which incorporate NLO effects.
For both cases, we take Λ = 263 Mev [29].

The results are shown in Table 1 and compared with
data [29] at Q2 = 20 GeV2. The expected trend of increase
of dF2/d log Q2 as x decreases is clearly manifested in
Table 1. However, both the LO and the NLO results are
higher than the experiment. The percentage of this differ-
ence is given in Table 2, which shows that the difference
is enhanced for NLO results.

Let us discuss quantitatively the results of Table 2. At
20 GeV2 the cross-over point of GRV-HO [23] and (14)
occurs at x > 10−2 while the data [29] are all at x <
10−2 where the difference between the two is considerable
[Fig. 1(e)], implying significant contribution from non-
factorizable component of the gluon distribution. For LO
results too [22], the cross over is roughly at the same point
while the difference between the predictions of GRV-LO
and the present one (17) is slightly less. Ideally it would
have been more appropriate to compare the prediction of
slope at x > 10−2 near the cross-over point where the non-
factorizable component is less dominant. However, lack of
data makes this possibility rather academic.

To conclude, we have proposed a form of gluon dis-
tribution at low x which is based on factorization of its
x and t dependences. Introduced initially as a convenient
way [21] of obtaining approximate analytical solutions of
GLAP equations, we have tested its validity by compar-
ing with a gluon distribution which has no such factoriz-
ability. For computational simplicity we have chosen GRV
[27, 23] in LO and NLO versions. For each Q2, we have ob-
tained a cross-over point for the two distributions. Around

the cross-over points, non-factorizable component tends to
be negligible. On this basis we have obtained an approxi-
mate factorizable zone [Fig. 2]. Our analysis suggest that
non-factorizable component invariably tends to enhance
(deplete) the gluon distribution for x below (above) the
cross-over points. lt will be interesting to investigate dy-
namical basis of this feature of gluon distribution.

Acknowledgements. Part of this work was done while one of
the authors (DKC) visited International Centre for Theoreti-
cal Physics, Trieste, Italy while the final version was completed
when he visited Centre for Theoretical Studies, Indian Insti-
tute of Science, Bangalore. He thanks both the institutions
for hospitability. He also acknowledges fruitful discussion with
Prof. R. Godbole. Support from Department of Science and
Technology, Government of India is gratefully acknowledged.

References
1. A.D. Martin, W.J. Stirling, R.G. Roberts, Phys. Rev.

D50 (1994) 6734
2. T. Ahmed et al., HI Collaborations, Nucl. Phys. B439

(1995) 471
3. M. Derrick et al., ZEUS Collaboration, Z. Phys. C65

(1995) 379
4. V.N.Gribov, L.N. Lipatov, Sov. J.Nucl. Phys. 15 (1972)

438
5. L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94
6. Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641
7. G. Altarelli, G. Parisi, Nucl. Phys. B126 (1977) 298
8. K. Prytz, Phys. Lett. B311 (1993) 286
9. K. Prytz, Phys. Lett. B332 (1994) 393

10. K. Bora, D.K. Choudhury, Phys. Lett. B354 (1995) 151
11. A.M. Cooper Sarkar et al., Z Phys. C39 (1988) 281
12. A.V. Kotikov, G. Parente, preprint (hep-ph/9606409)
13. A. De’Rujula, S.L. Glashow, H.D. Politzer, S.B. Trieman,

F. Wilczek and A. Zee, Phys. Rev. D10 (1974) 1649
14. R.D. Ball, S. Forte, Phys. Lett. B335 (1994) 77; Phys.

Lett. B336 (1994) 77
15. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor.

Fiz. 72 (1977) 373; Sov. Phys. JETP 45 (1977) 199
16. Ya.Ya. Balitskij, L.N. Lipatov, Yad, Fiz. 28 (1978) 1597;

Sov. J. Nucl. Phys. 28 (1978) 822
17. F.C. Coriano, A.R. White, Phys. Rev. Lett. 74 (1995)

4980
18. For phenomenological analysis with BFKL equations see

A.J. Askew, J. Kwiecinski, A.D. Martin, P.J. Sutton,
Phys. Rev. D47 (1993) 3775; Mod. Phys. Lett. A8 (1993)
3813; Phys. Rev. D49 (1994) 4402

19. W. Furmanski, R. Petronzio, Phys. Lett. B97 (1980) 437
20. W. Furmanski, R. Petronzio, Z. Phys. C11 (1982) 293
21. A. Saikia, D.K. Choudhury, Pramana J. Phys. 38 (1992)

313
22. R. Deka, D.K. Choudhury, Z. Phys. C75, 679–683 (1997),

hep-ph/9707247
23. M. Glück, E. Reya, A. Vogt, Z. Phys. C67 (1995) 438
24. E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B383 (1992)

552
25. E.L. Berger, R. Meng. Phys. Lett. B304 (1993) 318
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